The use of peat in commercial horticulture

Facts and figures
Content

About us 4

Emissions reduction strategy 5

Emissions from peat extractions 6

Peatlands and their use 6

Embracing our responsibility towards nature 7

Use of peat in growing media 8

Our production of substrate constituents 8

Tree nurseries: a case study 9

Our key performance indicators 10

Renewable energy and resources 11
About us

Natural raw materials, growing media, renewable energy

Klasmann-Deilmann is the leading corporate group in the international substrate industry, with sales and production companies in Europe, Asia and America. On every continent, our growing media provide a vital basis for the growth of fruit, vegetables, edible mushrooms, ornamental plants, trees and shrubs. They help ensure the success of our partners and customers in the commercial horticulture sector. Our product portfolio includes substrates for professional growers and the consumer sector, white and black peat as raw materials obtained from our own resources, as well as green compost and wood fibre manufactured in-house.

As a supplier of renewable resources, we have also established ourselves in the field of renewable energy. In so doing, we are placing our confidence in expertise we have acquired over many decades in managing land on a large scale and in utilising biomass. Our short-rotation coppice (SRC) plantations are already contributing to the supply of climate-friendly energy, especially in the Baltic region.

There are various benchmarks we use to gauge how seriously we take our responsibility for humankind, the environment and future generations. These include the monitoring of our raw materials and production processes by Regeling Handels Potgronden (RHP), the certification of our quality-management system to the ISO 9001 standard, our ISO 14001-compliant environmental-management system, the verification of our carbon footprint to the ISO 14064 standard, and reporting in compliance with Global Reporting Initiative (GRI Standards 2016). More than 70% of our raw peat materials are sourced from sites certified to the criteria of Responsibly Produced Peat (RPP). The chief restoration measure applied to former peat extraction areas is re-wetting.

The strategic focus of our company, a medium-sized family business, is extremely forward-looking. Keen to remain the most sustainable producer of growing media, we are working on far-reaching research projects to develop innovative raw materials, substrates and growing systems. In the renewable-energy and resources sector, too, we are single-mindedly pursuing a strategy of growth and are continuing to expand our service portfolio.

In all of our activities, our employees are a foundational asset. Time and again, their commitment plays a crucial role in moving us forward in terms of corporate sustainability and customer satisfaction. We encourage their development and are delighted by their strong ties with our organisation.

Product Carbon Footprint for selected substrates (2016)

<table>
<thead>
<tr>
<th>Recipe-No.</th>
<th>Substrate Type</th>
<th>Emissions Cradle to gate</th>
<th>Emissions Cradle to grave</th>
</tr>
</thead>
<tbody>
<tr>
<td>70413</td>
<td>Base substrate - White-peat</td>
<td>51.3</td>
<td>198.9</td>
</tr>
<tr>
<td>70002</td>
<td>Potgrond P - Black-peat</td>
<td>16.8</td>
<td>236.0</td>
</tr>
<tr>
<td>70062</td>
<td>KKS organic tray substrate - Black-peat /white-peat blend with green compost</td>
<td>55.4</td>
<td>195.0</td>
</tr>
<tr>
<td>70080</td>
<td>Seedling substrate - Black-peat /white-peat blend with coco pith</td>
<td>39.3</td>
<td>171.8</td>
</tr>
<tr>
<td>70698</td>
<td>BP substrate - Black-peat /white-peat blend with wood fibre</td>
<td>26.7</td>
<td>158.7</td>
</tr>
</tbody>
</table>
Emissions reduction strategy

We pursue a range of projects to reduce or compensate for the emissions we generate. They are part of our CO₂ reduction strategy.

Avoidance and direct capture of CO₂
- Afforestation
- Forest management
- Short-rotation coppice (SRC) plantation management
- Generation of heat energy from corporate-owned SRC plantations

Transport:
- The basic rule is ‘ship before rail before road’
- Reducing product weight to optimise capacity utilisation of transport units

Raw materials:
- Raising the proportion of alternative substrate constituents to 15% by volume of the annual production total by 2020
- Further advancement of sustainable land management
- Minimising the climate impact of our raw-materials procurement
- Rapid implementation of restoration measures on former extraction areas

Corporate Carbon Footprint (2016 in t CO₂e)

- Energy consumption: 19,705 t CO₂e
- External suppliers: 19,967 t CO₂e
- Other sources of emissions: 32,372 t CO₂e
- Extraction areas: 67,325 t CO₂e
- Transport: 69,560 t CO₂e
- Corporate Carbon Footprint: 208,929 t CO₂e
Peatlands and their use

Peat and peatlands worldwide

Worldwide, there are around 4,074,000 km² of peatland, 86% of which is in a natural state.

- Just under 10% of peatland has been drained in recent decades, especially for agricultural or forestry use.
- The resulting peat extraction areas cover some 2,000 km² (= 0.05% of the world’s total area of peatlands).

![Diagram showing worldwide use of peatland](image)

Emissions from peat extraction

Between 2015 and 2017, we conducted a scientific study in both Germany and Lithuania, involving the measurement of actual emissions (CO₂e) from peat extraction. Values previously used had been merely deduced as opposed to measured. The investigation indicated that emissions from peat extraction are lower than previously estimated. Peat, therefore, decomposes more slowly than previously assumed.

Average emissions in t CO₂e ha⁻¹ a⁻¹

- **3.13** Black peat, Germany
- **8.05** White peat, Lithuania

![Diagram showing emissions from peat extraction](image)
Measures following cessation of peat extraction

When extraction of the raw material has come to an end, the areas in question are prepared in line with requirements. Sites under restoration are made permanently available as biotopes for conservation and climate protection purposes. Klasmann-Deilmann has so far re-wetted, afforested or made available for agriculture 8,442 hectares.

Embracing our responsibility towards nature

Peatlands in Germany are protected

In Germany, peat extraction was expressly desired politically even into the 1970s. The policy was to take land lying unused and reclaim it for residential and agricultural purposes. Since then, peat extraction has taken place only on already drained sites, some of them previously used as farmland.

- Pristine bogs are designated protection areas and are left untouched - in Germany and elsewhere.
- Only around 2.9% of (former) peatland in Lower Saxony is used for peat extraction.
- A substantial amount of former peatland is subject to agricultural use.
- Klasmann-Deilmann’s land management and raw-materials extraction practices adhere to the Code of Practice of Growing Media Europe AISBL (formerly the European Peat and Growing Media Association, EPAGMA).
- Klasmann-Deilmann is managing an increasing number of extraction sites in compliance with the guidelines of Responsibly Produced Peat (RPP), the European certification system that stipulates binding and verifiable criteria for these activities. More than 70% of the company’s raw materials are now sourced from RPP-certified commercial peat fields.

Emissions in CO₂e from Lower Saxony peatland

The total area of peatland (including fenland and raised bogs) in Lower Saxony is around 389,000 hectares, of which about 2.9% is used for peat extraction. The following chart illustrates the breakdown of emissions from peatland (in CO₂e) by land use.

Greenhouse gas emissions from different peatland uses

Source: Heinrich Höper: Treibhausgasemissionen aus Mooren und Möglichkeiten der Verringerung, in: TELMA 2015, supplement no. 5, pp. 133ff
Use of peat in growing media

Peat is the most effective substrate component

The way growing media ‘work’ must reflect industrial standards, as modern commercial horticulture is a high-tech sector. From today’s perspective, there are no comprehensive alternatives to peat that would ensure this excellence is maintained without compromising on quality.

- Peat combines the properties that commercial gardeners expect from a growing medium.
- Peat-based substrates deliver unique reliability in cultivating a wide range of crops.
- Peat-based growing media of consistently high quality can be continuously produced and supplied.
- After processing, the different types of peat have physical, chemical and biological properties that, overall, are unmatched by any other raw material.
- In terms of plant cultivation, raw materials such as wood fibre, green compost and coco pith are a valuable complement to peat.
- Only in combination with peat do these raw materials achieve the desired horticultural effect.
- Growing media without peat are less reliable in terms of crop cultivation.
- Based on the current situation, doing without peat in growing media would lead to a substrate supply gap, as alternative substrate constituents are not available in sufficient quantities.
- Klasmann-Deilmann operates three in-house composting units and several wood fibre facilities at which quality-certified alternative substrate constituents are produced.
- By 2020, Klasmann-Deilmann aims to increase the proportion of alternative substrate constituents to 15% of its annual substrate production.

Our production of substrate constituents (2017)

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peat Raw Materials</td>
<td>3,273,541 m³</td>
</tr>
<tr>
<td>Wood Fibre</td>
<td>213,274 m³</td>
</tr>
<tr>
<td>Green Compost</td>
<td>91,572 m³</td>
</tr>
<tr>
<td>Production of growing media and potting soils</td>
<td>3,661,805 m³</td>
</tr>
</tbody>
</table>
Uses

Our selection of substrates covers a wide range of horticultural uses

Tree nurseries: a case study

Growing media for the tree nursery sector promote the growth of plants that, in many cases, are in pots for several years or are planted out. These plants capture CO₂ during the growth process and thus indirectly help absorb greenhouse gases.

- Copper beech: age 4 years, height 120 cm, width 50 cm
- CO₂ captured per plant: 432 g
- Each cubic metre of substrate is sufficient for 200 plants grown in 5 l containers
- In 10 years, 200 plants capture some 217 kg of CO₂, assuming absorption levels remain unchanged; in actual fact, increasing capture can be assumed, so that the positive impact is even greater
- Per cubic metre of substrate, around 86 kg of CO₂ are indirectly captured by the plants
- CO₂ equivalent to that released by the use of a ‘container substrate’ (recipe no. 250) will have been ‘recaptured’ after no more than 10 years

Our key performance indicators

Alternative constituents
By 2020, we aim to increase the proportion of alternative substrate constituents to at least 15% of our total annual production. This key performance indicator (KPI) reflects the used volumes (in m³) of our wood fibre product ‘GreenFibre’, our green compost ‘TerrAktiv’, and all other alternative bulking raw materials in relation to the total quantity of growing media (in m³) produced by the Klassmann-Deilmann Group.

Food sector
We wish, in future years, to step up our supplies to the fruit- and vegetable-growing sector. To document our progress here, we compare sales figures achieved for this area with total sales of growing media (in m³ in both cases).

Renewable energy
We want to see considerable growth in our Renewable Energy and Resources business unit over the coming years. Our activities in this area also contribute to emissions avoidance. The figure given below is the ratio between our corporate emissions (in t CO₂e) and the emissions avoidance that we made possible (in t CO₂e); it underlines the increasing importance of energy activities in our organisation and takes account of the emissions-preventing impact of our measures.

Emissions
As well as reducing our overall emissions, we are especially keen to reduce emission levels per product unit. In this KPI, therefore, we calculate the ratio between our corporate group’s total emissions (in t CO₂e) and our total production volume (in m³).

Employee health
The following KPI of employee health gives the ratio between the total number of days to be worked by our international workforce and the number of days off sick (including sickness periods of less than and more than six weeks).

58.88 t CO₂e (2016)

43.9 % (2017)

9.1% (2017)

17.1 % (2016)

96 % (2016)
Renewable energy and resources

In the Baltic region, Klasmann-Deilmann has extensive land areas for the planting and operation of short-rotation coppice (SRC) plantations. In the coming years, we intend to develop into a significant provider of alternative energy sources, e.g. for biomass cogeneration plants.

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total area available for establishing SRC in ha</td>
<td>3,267</td>
</tr>
<tr>
<td>SRC sites in use in ha</td>
<td>2,897</td>
</tr>
</tbody>
</table>